Pasture Growth Summary 2016

A falling plate meter is a tool that measures bulk density, and grass height to estimate pasture yield. Regular measurements throughout the growing season provide timely information, enabling grazing management based on the grass's "feed inventory". RAIN researchers summarize average grass growth in Algoma District for 2016.

This project was funded in part through Growing Forward 2 (GF2), a federalprovincial-territorial initiative. The Agricultural Adaptation Council assists in the delivery of GF2 in Ontario.

Author: Mikala Parr

For more information about this project, please contact:

Christine O'Reilly, Research Technician 705-942-7927 x3147 coreilly@ssmic.com

RAIN has been doing a weekly pasture walk starting on May 24th, 2016, and finishing on September 27th, 2016. During the walks, the grass was measured using a falling plate meter. The falling plate meter is a device used to estimate pasture forage yield. It measures bulk height, a combined measurement of grass height and sward density (thickness). For example, a tall thin grass stand may have the same bulk height as a short thick one. The plate is used by walking around the pasture, and in random spots gently placing the plate on the forage until the forage can support the plate. Then measure the height of the plate on the meter stick, and record.

To create a good estimate, you need to be sure to take enough samples to calculate an average yield (RAIN used 10 samples per paddock). As well, make sure to choose sampling points at random, and not just in spots that look productive, as that would not be an equal representation of the pasture. Falling plate meters must be calibrated to local conditions due to the diverse range of pasture species available.

Constructed Falling Plate Meter

Falling plate meter in the field

Northern Ontario Heritage Fund Corporation Société de gestion du Fonds du patrimoine du Nord

www.rainalgoma.ca

This could be used on the farm to give a farmer a better idea of what shape their pastures are in. It can help with management decisions by providing a better idea of when to take their livestock out of a paddock as well as when to put them back in. This can extend the grazing season length and improve the overall health of a pasture. This practice could be a good thing to work into a weekly routine. It may give the farmer an upper hand in managing their pastures by providing timely information rather than relying on end-of-season hay or silage yields.

	Average Daily Growth – Summer 2016	
Date	kg DM/ha	Ibs DM/ac
May 31st to June 7 th	61.45	55.30
June 7 th to June 14 th	75.70	68.13
June 14 th to June 21 st	64.98	58.48
June 21 st to June 27 th	65.99	59.39
June 27 th to July 5 th	48.91	44.02
July 5 th to July 12 th	0	0
July 12 th to July 18 th	40.89	36.80
July 18 th to July 26 th	0	0
July 26 th to August 2 nd	0	0
August 2 nd to August 9 th	0	0
August 9 th to August 16 th	21.28	19.15
August 16 th to August 23 rd	0	0
August 23 rd to August 31 st	18.51	16.66
August 31 st to Sept. 14 th	2.74	2.46
Sept. 14 th to Sept. 21 st	18.11	16.29
Sept. 21 st to Sept. 27 th	24.06	21.65

